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Conservation becomes increasingly complex as climate change exacerbates the multitude of stressors that organisms face.
To meet this challenge, multiple stressor research is rapidly expanding, and the majority of this work has highlighted the
deleterious effects of stressor interactions. However, there is a growing body of research documenting cross-protection
between stressors, whereby exposure to a priming stressor heightens resilience to a second stressor of a different nature.
Understanding cross-protection interactions is key to avoiding unrealistic ‘blanket’ conservation approaches, which aim to
eliminate all forms of stress. But, a lack of synthesis of cross-protection interactions presents a barrier to integrating these
protective benefits into conservation actions. To remedy this, we performed a review of cross-protection interactions among
biotic and abiotic stressors within a conservation framework. A total of 66 publications were identified, spanning a diverse
array of stressor combinations and taxonomic groups. We found that cross-protection occurs in response to naturally co-
occurring stressors, as well as novel, anthropogenic stressors, suggesting that cross-protection may act as a ‘pre-adaptation’to
a changing world. Cross-protection interactions occurred in response to both biotic and abiotic stressors, but abiotic stressors
have received far more investigation. Similarly, cross-protection interactions were present in a diverse array of taxa, but several
taxonomic groups (e.g. mammals, birds and amphibians) were underrepresented. We conclude by providing an overview
of how cross-protection interactions can be integrated into conservation and management actions and discuss how future
research in this field may be directed to improve our understanding of how cross-protection may shield animals from global
change.
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Introduction promise fitness or performance (Schulte, 2014). Organisms

are frequently faced with multiple biotic and abiotic stressors
Species persistence in a changing world will depend on their in concert, and global climate change is expected to increase
capacity to cope with a multivariate set of stressors in their the intensity and number of stressors in habitats (Todgham
habitat (Todgham and Stillman, 2013). Here we define stres- and Stillman, 2013). Multiple-stressor research has primarily
sors (and stress) as changes in an organism’s habitat that com-  focused on the negative consequences of concurrent stressor
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exposure on organisms (Coté et al., 2016). However, organis-
mal responses to stressors sometimes share protective mecha-
nisms (termed ‘cross-tolerance’) or share signalling/regulatory
pathways that activate independent protective mechanisms
(termed ‘cross-talk’) (Sinclair ez al., 2013). When protective
mechanisms or signalling pathways are shared among stres-
sors, increased tolerance to one stressor is associated with
increased tolerance to another stressor (Anttila et al., 2013).
This protective phenomenon is currently overlooked in the
context of biological conservation, but a greater understand-
ing of these interactions will allow for the development of
more effective management of multiple stressors.

Cross-protection interactions (encompassing both cross-
tolerance and cross-talk) are hypothesized to have evolved
in response to natural, predictable stressor cycles in habi-
tats. For example, intertidal species are generally exposed
to predictable stressors (e.g. heat, hypoxia, desiccation and
salinity fluctuations) linked to the ebb and flow of tides. This
synchronicity of stressors may explain why cross-protection
among stressors has been observed in intertidal fish (Todgham
et al., 2005). Similarly, dry conditions are often coupled with
low temperatures during winter in many habitats, and this
may explain why cross-protection between desiccation stress
and cold temperatures has been widely documented in polar
insects (Sinclair et al., 2013). Remarkably, cross-protection
has also been observed among novel, anthropogenic stressors.
For instance, a range of species, from nematodes to fishes, can
develop resistance to the normally toxic effects of pesticides
and pollutants following exposure to mild heat- or hypoxia-
stress (Alzahrani and Ebert, 2018, Dolci et al., 2013, Zou
et al.,2020). Similarly, livestock can be protected from disease
spread by pre-exposure to a mild stressor [e.g. osmotic or heat
stress; Huising et al., 2003, Rosenberg ez al., 2020].

When faced with stress, organisms launch an endocrine
stress response via the activation of the hypothalamic—
pituitary—adrenal (HPA) axis in birds, mammals and reptiles
and the hypothalamic—pituitary—interrenal (HPI) axis in
fishes (Pankhurst, 2011, Romero and Butler, 2007). This acti-
vation stimulates the production of catecholamines and glu-
cocorticoids in vertebrates, or a peptide protein (e.g. adipoki-
netic hormone; Orchard et al., 1993) in most invertebrates—
all of which work to mobilize energy substrates towards
defence mechanisms (e.g. molecular chaperones, antioxidant
defences) and the restoration of homeostasis (Romero and
Butler, 2007). However, chronic elevations in glucocorticoids
arising from long-term stress can be costly and are associated
with immunosuppression, reduced fecundity, slowed growth
and higher mortality rates (Romero and Butler, 2007). For this
reason, the protective benefits induced by a priming stressor
are strongly dependent on the severity (i.e. magnitude and
duration) of the priming stressor. If the priming stressor is
too severe, cross-protection may not develop or the organism
may require a recovery period (RP) before cross-protection
is expressed (Fig. 1; Todgham et al., 2005). Understanding
the nuances among stressor severity and the development

Conservation Physiology - Volume 9 2021

stressor A
[11]
S
o
@ .
2 — Immediate
S .
A cross-protection
o
e — Delayed
e cross-protection
g RP
o
[~

Time

Figure 1: Conceptual diagram of cross-protection responses.
Cross-protection occurs when exposure to a priming stressor
(stressor A) elicits a beneficial response that heightens organismal
tolerance to a stressor of a different nature (stressor B). The orange
shaded panel represents the time period that an organism is exposed
to stressor A before tolerance to stressor B is increased. Increased
tolerance of stressor B can be immediate (immediate
cross-protection; red line) when no RP is required, whereas delayed
cross-protection (blue line) requires an RP before tolerance to
stressor B is increased.

of cross-protection is essential before integrating these
interactions into species recovery/protection plans.

Phenotypes arising from cross-tolerance and cross-talk are
the same; mild exposure to an initial priming stressor elicits a
beneficial response that protects the organism from a subse-
quent stressor of a different nature. However, the mechanisms
underlying these interaction types are distinct. With cross-
tolerance interactions, the priming stressor initiates cellular
defences that offer protection from subsequent stress. For
example, cold and desiccation stress have similar effects at
the cellular level (e.g. osmotic stress) and can be countered by
overlapping compensatory mechanisms (e.g. upregulation of
cryoprotectants, osmoprotectants and molecular chaperones)
(Sinclair et al., 2013). In contrast, with cross-talk interactions,
the priming stressor and the secondary stressor share sig-
nalling pathways, which facilitate the expression of indepen-
dent protective mechanisms. For instance, exposure to cold
stress can strengthen immune responses in polar insects; but,
physiological mechanisms of cold protection generally do not
overlap with immune protection, and heightened immunity in
the cold is likely linked to shared stress signalling pathways
(Sinclair et al., 2013).

Cross-tolerance and cross-talk interactions are present in
a diverse array of taxa. Yet, this protective phenomenon is
currently overlooked in the context of biological conserva-
tion. The unprecedented rates of biodiversity loss worldwide
has stimulated a call for species management plans to be
placed within a global change context (Reid ez al., 2019,
Simmonds, 2018). A lack of synthesis of cross-protection
interactions presents a barrier to moving forward with new
management and conservation actions. Moreover, managers
are often unaware of the data that currently exists and how
this knowledge can be useful in preventing further popu-
lation declines. Understanding cross-protection interactions
is immensely beneficial in developing science-informed con-
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servation actions. For example, identifying cross-tolerance
interactions is essential when developing management actions
that target the mitigation of stressors that do not provide
protective benefits. Here, we used a review protocol to synthe-
size cases of cross-tolerance within a conservation framework.
The aim of this review was fivefold: (i) to synthesize cross-
protection interactions among abiotic and biotic stressors,
(i) to identify physiological changes associated with cross-
protection interactions, (iii) to evaluate the importance of
stressor severity on interactions, (iv) to highlight opportu-
nities where cross-protection interactions can be integrated
into conservation plans and (v) to identify knowledge gaps to
direct research efforts.

Review protocol

Our review protocol followed PRISMA guidelines (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses;
Fig. S1; Moher et al., 2015) and a ROSES (RepOrting stan-
dards for Systematic Evidence Syntheses; Haddaway er al.,
2017) form is included as a supplementary file (S2). We
searched for studies that observed cross-protection among
two or more stressors in non-human animals. Searches were
conducted using Scopus and Web of Science’s (WoS) core
collection on 3 September 2020. We used the following
search strings: TOPIC: (‘cross-tolerance” OR ‘cross tolerance’
OR ‘cross-talk® OR ‘cross talk® OR ‘cross-protection’
OR ‘cross protection’ OR ‘inducible stress tolerance’ OR
‘prexconditioning’ OR  ‘prextreatment” OR ‘rapid stress
hardening” OR ‘hormesis’) AND (‘stress*’) NOT (‘humanx’
OR ‘medic¥> OR ‘clinicx” OR ‘plant+’ OR ‘cropx’ OR
‘germinat¥’ OR ‘cell¥’ OR ‘ratx” OR ‘mouse’ OR ‘mice’) in
WoS, and TITLE-ABS-KEY: (‘cross-tolerance’ OR ‘cross tol-
erance’ OR ‘cross-talk” OR ‘cross talk’ OR ‘cross-protection’
OR “cross protection” OR ‘inducible stress tolerance’ OR
‘prexconditioning” OR ‘prextreatment’ OR ‘rapid stress hard-
ening’ OR ‘hormesis’) AND (‘stressx’) AND NOT (‘humansx’
OR ‘medic¥’ OR ‘clinic¥’ OR ‘plants’ OR ‘cropx’ OR
‘germinat+’ OR ‘cell«” OR ‘ratx’ OR ‘mouse’ OR ‘mice’) in
Scopus. We identified 798 and 759 studies meeting the search
terms in WoS and Scopus, respectively. A total of 238 dupli-
cates were removed, leaving 1319 papers for title and abstract
screening (Fig. S1, PRISMA). We cross-referenced our search
with three related review or perspective papers (Berry and
Lopez-Martinez, 2020, Sinclair et al., 2013, Todgham and
Stillman, 2013) and included any papers missed in our initial
search (N =40). Title and abstract screening were conducted
in Rayyan (Ouzzani et al., 2016). We excluded studies that (i)
were reviews or commentaries, (ii) were conducted on humans
or biomedical models, or (iii) did not find evidence of cross-
tolerance or cross-talk between two or more stressors. Studies
that showed stress-hardening to the same stressor (e.g. heat
hardening, cold hardening, hypoxia acclimation) were not
included. Following these exclusion steps, we identified 66
papers to include in the review. For each priming stressor we
compiled a list of biological effects, associated physiological
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changes and taxonomic groups in which cross-protection
interactions has been observed (Tables 1-3).

Cross-protection among abiotic stres-
sors

As habitat temperatures rise worldwide, it is essential that we
understand circumstances where heat stress provides cross-
protection against stress of a different nature. Exposure to
both short-term and long-term temperature increases can
sometimes elicit protection against different stressors in both
ectothermic and endothermic species (e.g. Kalra et al., 2017,
Peaydee et al., 2014, Rosenberg et al., 2020). These observa-
tions suggest that habitat warming has the potential to protect
organisms from additional threats, although the extent of
this protection is highly dependent on the severity of thermal
stress. Studies investigating cross-protection between heat
stress and additional stress generally prime organisms with
exposure to elevated temperatures. Experimentally priming
organisms with acute rises in temperature is referred to as heat
shock (HS). In HS experiments, organisms are typically held
at an elevated temperature for 1-2 h and then returned to a
lower ambient temperature for a RP, lasting between 2 and
12 h. Following recovery, tolerance to a secondary stressor
(e.g. a pollutant or hypoxia) is assessed and compared to
control organisms that were not exposed to HS. Alternatively,
chronic thermal acclimation experiments involve maintaining
organisms at sub-lethal, elevated temperatures for prolonged
periods (typically >4 weeks) and subsequently assessing tol-
erance to a secondary stressor. Both experimental approaches
provide a powerful approach to investigating the impact of
heat stress in a global change context when realistic warming
scenarios and/or HS conditions are applied.

The effects of heat priming are particularly well studied in
fish, and exposure to mild heat stress can provide heightened
tolerance to a range of abiotic stressors (Table 1). For
example, in killifish (Fundulus heteroclitus), 6 weeks of
acclimation to an elevated temperature (23°C) markedly
improved tolerance to subsequent hypoxia stress compared
to cold-acclimated (15°C) fish when tested at the same test
temperature (23°C) (McBryan et al., 2016). This interaction
was linked to an increase in gill surface area due to a
reduction in cell mass in warm-acclimated fish. The protective
interaction between heat and hypoxia can also remain
when hypoxia is the stressor initially encountered (see
Hypoxic and anoxic stress). For example, the survival of
tidepool sculpins (Oligocottus maculosus) briefly exposed
to hypoxic conditions (priming stressor, 0.33mg O, L' for
2 h) increased by 41% during a subsequent HS (secondary
stressor, +12°C for 2 h), compared to controls that were
held under normoxic conditions (Todgham et al., 2005). It is
important to note that the 2 h HS exposure used by Todgham
et al. (2005) does not represent natural tidepools where peak
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temperature is gradually approached over many hours. Future
work would therefore benefit from using environmentally
realistic tidepool warming scenarios (i.e. warming throughout
a hot day) to examine if hypoxic conditions (0.33mg O, L™!
for 2 h) induce cross-protection. Cross-protection among
elevated temperatures and hypoxia is particularly relevant in
a global change context because both stressors are predicted
to intensify moving forward (Breitburg et al., 2018, Diaz,
2001). Overlapping compensatory responses (e.g. increases
in oxygen uptake/transport capacity) between these stressors
may facilitate the development of phenotypes that can cope
with complex stressor combinations.

HS can also improve tolerance to osmotic stress in fish.
For instance, tidepool sculpins (O. maculosus) primed with a
+12°C HS experienced a marked reduction in mortality when
exposed to an osmotic challenge (90 ppt for 2 h), compared
to controls (Todgham et al., 2005). However, the magnitude
of the initial HS determined whether cross-protection was
developed: a +10°C HS provided no protective benefits,
whereas a +15°C HS increased fish susceptibility to osmotic
stress. The RP between the two stressors was also critical. Fish
required an 8-h RP following the +12°C HS before cross-
protection developed, potentially reflecting the timeframe
required to upregulate cellular defences. The sensitivity of
this interaction to the RP may reflect natural timings of
stress in the intertidal zone. Todgham ez al. (2005) reflected
that the 8-h RP required for cross-protection development is
similar to the interval between high and low tides, but more
research is required to confirm if cross-protection occurs in
the field. The protective effect of heat stress on tolerance to
osmotic stress has also been investigated in an aquaculture
context. Dubeau ef al. (1998) found that priming hatchery-
reared Atlantic salmon (Salmo salar) with a brief HS (26°C
for 15min) prior to exposing fish to a severe osmotic challenge
(45 ppt exposure; similar to being transferred to seawater
pens) significantly increased survival rates (Box 1). This was a
particularly promising finding because transferring salmon to
seawater pens is a necessary but stressful process, which can
curb fish growth and cause mortality.

Heat stress can also increase the resilience of fish,
crustaceans and nematodes to a range of pollutants. For
example, Wang et al. (2020) found that priming nematodes
(Caenorbabditis elegans) with a 1-h HS at 35°C before expos-
ing them to heavy metal (cadmium) pollution, dramatically
increased survival rates compared to non-HS controls. Heat-
shocked nematodes were also protected from the usual toxic
effects of cadmium (i.e. compromised intestinal barriers and
a bagging phenotype) and showed an increased expression of
heat shock protein (HSP)-16.2. (HSP-16.2). Further to this,
Wang et al. (2020) demonstrated that the protective effects of
HS were absent when an HSP-16.2 loss-of-function mutation
was induced in the nematodes, suggesting the expression of
HSP-16.2 was essential for cross-protection to develop. Heat
stress can also protect organisms from organic pollutants,
like nitrogenous waste accumulating in aquatic habitats from
fertilizers, livestock manure and urban runoff. Heat-shocked
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Box 1. Cross-protection in an aquaculture
species

Atlantic salmon (Salmo salar) are an economically valuable species,
but they face a major osmotic challenge when they are transferred
from freshwater hatcheries to seawater pens. This osmotic challenge
is far more severe in an aquaculture setting, because fish are
moved directly from freshwater to seawater, instead of a gradual
transition, which occurs during natural migrations. Compounding
this stress, fish are sometimes moved before they have developed
osmoregulatory capabilities (parr-smolt transformation). For these
reasons, transferring salmon to seawater pens often leads to stunted
growth or death. Dubeau et al. (1998) investigated whether salmon
could be protected against this osmotic challenge by priming fish
with a heat shock. Fish were exposed to a heat shock (26°C for 15
min) before being exposed to a severe osmotic challenge (45 ppt),
and control fish were not primed with a heat shock. Heat-shocked
salmon showed significantly improved survival during the osmotic
challenge compared to control salmon. This was the first study to
demonstrate that heat shock can confer protection against osmotic
stress in a living animal. Image by Daniel Gomez Isaza.

(35°C for 2 h) tiger shrimp (Penaeus monodon) experienced
heightened tolerance to ammonia pollution (15% higher sur-
vival rates at 0.69 NH3-N mg |') compared to non-HS con-
trols (Peaydee et al., 2014). Similarly, the negative effects of
nitrate pollution (i.e. reductions in aerobic scope, swimming
performance and heat tolerance) were ameliorated in silver
perch (Bidyanus bidyanus) following an 8-week acclimation
period to a climate warming scenario (+4°C) (Gomez Isaza
et al., 2020, Gomez Isaza et al., 2021).

Exposure to elevated temperatures can also induce cross-
protection to insecticides in pests, suggesting that climate
warming may reduce the efficacy of some insecticides. For
example, phosphine is a fumigant commonly used worldwide
to control insect pests in stored food, like grain. Alzahrani and
Ebert (2018) found that nematodes exposed to HS (30°C for
4h) were approximately three times more tolerant of phos-
phine compared to controls, suggesting higher doses may be
required under warmer conditions. Moreover, food stores are
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commonly treated by combining heat stress with insecticides
(Fields and White, 2002), without realizing that heat stress
may be increasing insecticide resistance in some pests. HS
can also heighten insecticide resistance in disease vectors,
like mosquitoes. For example, exposure to high sub-lethal
temperatures (39°C for 1-3 h) in mosquito larvae (Anopheles
stephensi and Anopbheles aegypti) provided cross-protection
to propoxur, a carbamate insecticide (Patil ez al., 1996).
Moreover, mosquitos reared at warmer temperatures can also
tolerate higher virus loads (Hurlbut, 1973). Taken together,
these findings suggest appropriate insecticide doses moving
into the future should account for potential cross-protection
interactions between heat stress and insecticide resistance.

At the opposite end of the thermal spectrum, mild cold
stress can provide protection against a range of stressors
in ectotherms, including desiccation stress, food limitation,
pathogens and even heat stress (Table 2; Le Bourg, 2016,
Le Bourg et al.,, 2009, Scharf et al., 2019, Williams and
Lee, 2011). Cross-tolerance and cross-talk are well docu-
mented among polar insects (reviewed in Everatt et al., 2015,
Sinclair et al., 2013), where insects must survive harsh winter
temperatures bundled with additional stress, like low water
availability (Danks, 2000). At sub-zero temperatures, the
vapour pressure of ice is lower than liquid or body fluids
and the environment becomes severely desiccating. Cold and
desiccation stress exert similar effects at the cellular level
(dehydration and osmotic stress), but these stressors also
share cellular defences, such as the upregulation of cryopro-
tectants. Therefore, it is unsurprising that insects that are
cold hardy also tend to be desiccation hardy. Numerous
studies have shown that exposure to cold shock can heighten
desiccation resilience in insects (Table 2). For example, fol-
lowing cold acclimation, the goldenrod gall fly (Eurosta
solidaginis) experienced reduced water loss and was con-
comitantly less susceptible to desiccation (Williams and Lee,
2011). Cross-protection between cold and desiccation stress
generally remains when desiccation is the priming stress (see
Desiccation stress; Levis et al., 2012, Yi et al., 2017). For
instance, desiccation exposure (4% relative humidity, RH for
3 h) improved larval pupariation rates following cold shock
(—9°C for 2 h) by 12% in the flesh fly (Sarcophaga bullata)
(Yietal.,2017).

Cold, winter-related stress is often bundled with limited
food availability. In some species, cold shock or cold
acclimation can increase tolerance to food limitation. Female
red flour beetles (Tribolium castaneum), for example, expe-
rienced stronger starvation tolerance following cold shock
compared to controls. But, this stronger starvation tolerance
was traded-off against reproductive success (Scharf et al.,
2019) and cross-protection between cold and starvation
resistance is far from universal among insects (Kenny et al.,
2008, Pathak et al., 2018). Cold stress can also stimulate
preparatory mechanisms that aid organisms in coping with
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pathogens (Table 2). Strong links have been established
between cold stress and the upregulation of immune system
responses in insects (reviewed in Sinclair et al., 2013).
In general, insects exposed to cold conditions exhibit an
upregulation in immunity-related genes and heightened
tolerance to fungal infections (Le Bourg ez al., 2009, Marshall
et al., 2011, Salehipour-shirazi et al., 2017, Zhang et al.,
2011). For example, Drosophila melanogaster exposed
to cold stress (daily exposure to 0°C for 1 h) exhibited
heightened resistance to a fungal infection (Beauveria
bassiana), and this protection persisted throughout their
lifetime (Le Bourg et al., 2009).

Desiccation stress often coincides with thermal stress: freezing
temperatures reduce the availability of free water, whereas
warming triggers faster evaporation rates (Danks, 2000).
Exposure to desiccation stress can confer increased resilience
to subsequent thermal stress, and cross-protection between
dehydration stress and thermal stress is well documented
in arthropods (Table 2). In particular, desiccation and cold
stress are often coupled during winter for insects living
in polar habitats; insects stop drinking during dormancy,
and free water becomes less available (Sinclair et al.,
2013). Desiccation and cold stress also exert similar effects
(dehydration and osmotic stress) at a cellular level, and can
therefore be counteracted by similar compensatory responses
(Sinclair et al., 2013). Overlapping compensatory responses
include the generation of cryoprotectants and molecular
chaperone proteins, as well as the alteration of cell membrane
structures (Table 2). For example, acute desiccation in the
Antarctic midge (Belgica antarctica) increased survival by
~50% during a freeze challenge (—14°C) (Kawarasaki
et al., 2019). This cross-protection was linked to both
freezing and desiccation stress independently increasing
the accumulation of shared cryoprotectants (glycerol and
erythritol) (Robert Michaud ez al., 2008), which reduce
extracellular ice formation, prevent cell membrane damage
and prevent low-temperature denaturation of proteins (Tang
and Pikal, 2005, Tsvetkova and Quinn, 1994). Enhanced
cold tolerance can also be rapidly induced by desiccation—a
phenomenon termed ‘drought-induced rapid cold hardening’.
Desiccation (4% RH) in the goldenrod gall fly (E. solidaginis),
for instance, induced cellular protection within just 1 h (Gantz
and Lee, 2015). This rapid response occurs within a similar
timeframe to rapid cold hardening, where cold tolerance is
quickly heightened in response to chilling. Although cold and
desiccation stress share some protective mechanisms, these
stressors appear to have distinct signalling pathways (Sinclair
et al., 2007, Serensen et al., 2010), so cross-protection
between these stressors likely evolved as cross-tolerance
rather than cross-talk (Sinclair et al., 2013).

Desiccation stress can also boost heat tolerance in many
tropical insects (Table 2). High temperatures and desicca-
tion stress are often coupled, particularly in drought-prone
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habitats. Warming temperatures can even act as an important
cue for the development of a desiccation-resistant phenotype
in salamanders (Plethodon metcalfi) (Riddell et al., 2019).
Moreover, heat resistance can be boosted by desiccation accli-
mation (<10% RH for 16 h) in a tropical drosophilid (Zapri-
onus indianus) (Kalra et al., 2017). This cross-protection
interaction was linked to an accumulation of trehalose, which
is an osmoprotectant implicated in heightened tolerance to
cold, desiccation, and even hypoxia in several insects (Benoit
et al., 2009, Chen and Haddad, 2004). In a similar study, des-
iccation exposure (7% RH, for 4.5 d) in the lesser mealworm
(Alphitobius diaperinus) extended survival times at elevated
temperatures by 4 days compared to controls (Renault ez al.,
2015). Similarly, critical thermal maxima also increased fol-
lowing desiccation stress in the natal fruit fly (Ceratitis rosa;
Gotcha et al., 2018). Understanding cross-protection interac-
tions between desiccation and heat stress is becoming increas-
ingly important as climate change disrupts precipitation pat-
terns, causing more intense droughts (Trenberth et al., 2014,
Williams et al., 2013).

Almost all organisms require oxygen to support cellular
metabolism. Consequently, low-oxygen conditions can be
tremendously stressful and often result in oxidative stress
[i.e. the over-accumulation of reactive oxygen species (ROS),
which can damage nucleic acids, proteins, and lipids;
Majmundar et al., 2010]. However, ROS production is
also essential for cellular communication and reinstating
homeostasis following stress in a range of species (Gorlach
et al., 2015). Indeed, low levels of oxidative damage may
be critical for the development of cross-protection. The
preparation for oxidative stress (POS) hypothesis predicts
that, in cases of cross-protection, the priming stressor
stimulates a beneficial level of ROS, which serve as signalling
molecules to activate cellular defences (Giraud-Billoud et al.,
2019, Hermes-Lima et al., 2001, Hermes-Lima and Zen-
teno-Savin, 2002). Therefore, it is unsurprising that exposure
to hypoxic or anoxic conditions can sometimes provide
organisms with cross-protection to other stressors (Boardman
et al., 2015, Dolci et al., 2014, Lopez-Martinez and Hahn,
2014, Lopez-Martinez and Hahn, 2012). Moving forward,
hypoxic conditions are projected to intensify in aquatic
habitats due to the progression of climate change and
continued eutrophication from agricultural, urban and
sewage runoff (Breitburg et al., 2018, Diaz, 2001). Therefore,
understanding how exposure to hypoxia influences an
organism’s capacity to cope with additional stress is an
essential consideration in species management plans.

Hypoxic waters are frequently contaminated with a range
of chemicals, deeming the interactions between these stressors
particularly relevant. Exposure to low oxygen can sometimes
provide cross-protection against contaminants. For example,
Fitzgerald et al. (2016) found that copper (Cu) toxicity was
lowered by more than 2-fold when zebrafish embryos (Danio
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rerio) were reared under hypoxia compared to normoxia.
The suppression of Cu toxicity stemmed from the activation
of the hypoxia inducible factor (HIF, HIF-1a), which is a
transcriptional activator. Once the embryos hatched, however,
hypoxia exposure had the opposite effect and Cu toxicity
was enhanced by hypoxia, showing that the cross-protection
interaction is highly specific to life-stage. Similarly, hypoxia
acclimation can protect silver catfish (Rhamdia quelen) from
manganese pollution coming from oil and gas extraction
operations (Dolci ef al., 2013, Dolci et al., 2017, Dolci et al.,
2014). Dolci et al. (2014) acclimated silver catfish to hypoxic
(36% oxygen saturation) or normoxic (97% air saturation)
conditions for 10 days and subsequently exposed fish to
manganese for an additional 10 days. Hypoxia-acclimated
fish showed reduced manganese accumulation in their kid-
neys, brain and plasma. Moreover, the usual toxic actions of
manganese (reduced haematocrit, hormonal disruptions and
reduced NatK*— ATPase activity) were reduced in hypoxia-
acclimated fish. Lending support to the POS hypothesis,
the protective role of hypoxia was linked to its capacity to
ameliorate oxidative damage by increasing catalase enzyme
activity, which plays a key role in detoxifying the renal sys-
tem. Although these cases of cross-protection exist, hypoxia-
induced protection from contaminants cannot be generalized.
These interactions are highly variable among pollutant types,
species and life-stage, and several studies report an increase in
contaminant toxicity/sensitivity under low-oxygen conditions
(Hattink et al., 2005, Hattink et al., 2006, Mustafa et al.,
2012).

Hypoxia and heat stress are frequently paired in natural
habitats, as the solubility of oxygen decreases as water tem-
peratures increase (Keeling et al., 2010). The links between
hypoxia and heat stress have captured the attention of
many ecophysiologists because both stressors impact aerobic
metabolism in ectotherms and both stressors are projected
to intensify under climate change. Hypoxia directly limits
the availability of oxygen in the environment; as hypoxia
intensifies it becomes increasingly difficult to meet metabolic
demands. Whereas, heat increases resting metabolic demands
in ectotherms, so that more oxygen is required as tempera-
tures rise. Many ecophysiologists have, therefore, hypothe-
sized that organismal heat tolerance should be reduced under
hypoxic conditions (McBryan et al., 2013, Portner, 2001),
but this hypothesis overlooks the potential for overlapping
compensatory responses between the two stressors. Acclima-
tion to hypoxia may induce physiological changes that lower
an organism’s sensitivity to elevated temperatures. Hypoxia
acclimation in fish typically involves adjustments that
increase oxygen uptake efficiency (e.g. increased gill surface
area), improve blood oxygen carrying capacity (e.g. increased
haematocrit) and lower metabolic rates (Polymeropoulos
et al., 2017, Richards, 2009). Since heat tolerance is linked
to oxygen supply and demand, the physiological changes
induced by hypoxia acclimation may also improve heat
tolerance. Indeed, hypoxia acclimation has resulted in
improved heat tolerance in several fishes. For example,
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channel catfish (Ictalurus punctatus) acclimated to hypoxic
conditions (50% air saturation) for 7 days, showed increased
heat tolerance compared to fish maintained under normoxic
conditions (Burleson and Silva, 2011). This increased heat
tolerance was linked to hypoxia-induced remodelling of the
cardiovascular system, where fish were able to maintain heart
rate and blood pressure at higher temperatures compared
to controls. Similarly, Chinook salmon (Oncorbynchus
tshawytscha) reared under hypoxic conditions (50% air
saturation) experienced improved heat tolerance in later life,
but this came at the cost of reduced survival and growth rates
(Del Rio et al., 2020). In general, chronic exposure to hypoxic
conditions is required before cross-protection can develop,
likely reflecting the time required to remodel underlying
physiology. In support of this idea, numerous studies have
shown that acute hypoxia exposure has a depressive effect
on heat tolerance in ectotherms (Ellisa et al., 2013, Ern et al.,
2015, Ern et al., 2017, Ern et al., 2016, Klok et al., 2004,
Verberk et al., 2016).

At the extreme end of oxygen limitation, anoxia can
also provide cross-protection to additional stressors. For
instance, anoxia exposure can boost both heat and cold
tolerance in insects. Brief (1 h) exposure to anoxia increased
survival times at high temperatures (53°C) in the locust
(Locusta migratoria) (Wu et al., 2002), and this interaction
is thought to be connected to L. migratoria naturally
experiencing oxygen limitation (from intense aerobic work-
load) in combination with high temperatures during long-
distance migrations. Similarly, house flies (Musca domestica)
experienced improved survival at —7°C following brief
exposure to anoxia (Coulson and Bale, 1991). Precon-
ditioning with anoxia can also protect insects against
radiation, by stimulating the upregulation of antioxidant
enzymes (Lopez-Martinez and Hahn, 2014, Lopez-Martinez
and Hahn, 2012, Loépez-Martinez et al., 2014); how-
ever, the ecological relevance of radiation protection is
limited.

Cross-protection among biotic
stressors

Organisms frequently face a complex range of biotic stressors,
including pathogens, introduced species, predation pressure
and resource competition. Yet, far less research has been
conducted on cross-protection interactions involving biotic
stressors compared to abiotic stressors. This may be due to
biotic stressors being more difficult to manipulate experi-
mentally, or because of the complex, often interlinked nature
of biotic stressors. Conspecific crowding, for example, is a
complex stressor that may decrease food availability, increase
competitive interactions, facilitate disease spread and lead
to an accumulation of toxic wastes. Despite these negative
effects, crowding stress can sometimes enhance starvation
tolerance (Mueller et al., 1993), promote greater resistance
to fungal growth and increase heat and cold tolerance (Henry
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et al., 2018). For example, Henry et al. (2018) reared larval
D. melanogaster under low (5 eggs ml™! of food), medium (60
eggs ml~' of food) and high densities (300 eggs ml™" of food)
and found that both heat and cold tolerance was higher in
larvae raised under medium and high densities compared to
larvae raised under low densities. Predation pressure can also
induce cross-protection in some cases. For example, pesticide-
induced oxidative damage was reduced in damselflies (Enal-
lagma cyathigerum) when they were exposed to predator cues
(Janssens and Stoks, 2017). Similarly, parental exposure to
predator cues in freshwater snails (Biomphalaria glabrata)
resulted in offspring that had greater resistance to cadmium
pollution (Plautz et al., 2013).

Pathogens (e.g. viruses, bacteria, fungi, parasites, etc.) are the
most well investigated biotic stressor studied within a cross-
protection context. Interactions between pathogen stress and
thermal stress have received a great deal of attention, likely
because both stressors are predicted to shift under climate
change (Metcalf et al.,2017). Moreover, since pathogen stress
and thermal stress often share common pathways, cross-
protection interactions are expected (Sinclair et al., 2013).
For example, exposure to infectious disease in Drosophila
increases the expression of heat shock proteins (HSPs;
Merkling et al., 2015) and exposure to thermal stress can
upregulate the expression of immune-related genes (Sinclair
et al., 2013, Zhang et al., 2011). Pathogens are frequently
used as either the priming or the secondary stressor in
cross-protection studies. For example, Leroy et al. (2012)
fed nematode larvae (C. elegans) with either pathogenic
or innocuous (control) bacterial strains and measured heat
tolerance and resistance to different pathogens in adults.
Nematodes fed the pathogenic bacterial strain showed higher
levels of HSP (HSP-16.2) expression, increased heat tolerance
and greater resistance to other pathogens (Leroy ef al.,
2012). Similarly, the immune system of D. melanogaster was
activated by exposing individuals to heat-killed bacteria, and
this activation improved knockdown times during HS (Hector
et al., 2020). However, this response was not generalizable as
it was only observed in certain populations (Hector et al.,
2020). The links between temperature-related stress and
pathogen resistance remain when pathogen exposure is
the secondary stressor (see Cold stress). For example, heat-
shocked (39°C for 60, 90, and 120 min) brown mosquitoes
(Culex quinquefasciatus) showed a 2.6- and 1.5-fold increase
in survival when exposed to toxins produced by Bacillus
thuringiensis israelensis, compared to non-heat-shocked
controls (Barik ef al., 2018). Similarly, corals (Porites
cylindrical) exposed to an elevated water temperature (32°C
compared to a control temperature of 27°C) had heighted
constituent immunity compared to controls (Palmer, 2018).

Cross-protection interactions involving pathogens have
also been examined within aquaculture and poultry farming
contexts. High-density aquaculture operations have increased
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the need to protect animals from the spread of diseases, and
vaccines are often administered. Huising ez al. (2003) found
that the efficacy of an immersion vaccine can be enhanced
in common carp (Cyprinus carpio) by exposing fish to an
osmotic challenge before vaccination. The osmotic challenge
increased the uptake of the vaccine in fish by temporarily
disrupting the gill epithelium, and immune system activation
was also more pronounced in fish primed with an osmotic
shock. Similarly, resistance to a lipopolysaccharide challenge
can be heighted in chickens (Gallus domesticus) by exposing
embryos to heat stress (Rosenberg et al., 2020). Chickens that
had experienced heat stress as embryos exhibited substantial
reductions in hypothalamic inflammation when exposed to
the lipopolysaccharide challenge.

Starvation stress can occur when an animal fails to con-
sume food or consumes insufficient food to cover minimum
energetic requirements. Most species experience periods of
intermittent food limitation during their lifetime. Periods of
starvation can occur predictably (e.g. tidal, seasonal) or be
caused by unpredictable forces (e.g. stochastic events such
as fires, floods or by inter- and intra-specific competition;
McCue et al., 2017). To cope with the stress of starvation,
many species respond physiologically by undergoing periods
of metabolic rate suppression (McCue, 2010, Semsar-kazer-
ouni et al., 2020), upregulate cellular responses (e.g. HSPs;
Cara et al., 2005, Yengkokpam et al., 2008) and exploit
stored body reserves (primarily lipids, glycogen) to maintain
homeostasis and fuel vital metabolic pathways necessary
for survival (De Boeck et al., 2013, Hervant, 2013). When
starved, animals also alter their behaviour (e.g. starvation-
induced hyperactivity, selection of cooler microhabitat by
ectotherms, periods of hibernation and torpor in birds and
mammals; Geiser, 1988, Killen, 2014, Yang ef al.,2015) in an
attempt to conserve mass and energy. Such mechanisms used
to cope with starvation can confer cross-protection to other
stressors (Table 1 and 2). For instance, De Boeck et al. (2013)
found that oscars (Astronotus ocellatus) are more tolerant of
low oxygen levels (as measured by the critical oxygen tension,
Pcrit) when previously starved for 10-14 days. Similarly,
during starvation, D. melanogaster conserve glycogen stores
and subsequently retain large amounts of metabolic water
(Djawdan et al., 1998), which increases their capacity to resist
desiccation (Bubliy ez al., 2012). This capacity to redirect
energy stores during periods of starvation can sometimes
prime organisms against the threat of other stressors.

Paradoxically, periods of starvation can improve tolerance
to elevated temperatures. Studies on various invertebrate
species have found that starvation (of varying degrees) can
induce cross-protection to elevated temperatures by increas-
ing upper thermal tolerance limits (c.f. Bubliy ez al., 2012,
Scharf ez al., 2016). For example, starved amphipods (Gam-
marus fossarum) showed improved survival when exposed to
an acute, high-intensity heat treatment (Semsar-kazerouni
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et al., 2020). Similarly, African fruit flies (C. rosa) that
were starved for 10 days tolerated significantly warmer
temperatures than their recently fed counterparts (Gotcha
et al., 2018), a result attributed to the accumulation of lipids
that occurs during starvation in insects (Djawdan et al., 1998).
This accumulation of energy reserves may have benefitted
starved flies during subsequent heat stress by allowing them
to redirect energy reserves towards energetically demanding
processes, such as the production of HSPs (Sokolova, 2013).
Cross-protection between starvation and heat stress has
also been documented among endothermic animals. Broiler
chickens fed on a 60% (but not 80% or 40%) food ration
experienced improved heat tolerance; an effect that was corre-
lated with an enhanced ability to express HSP70 in the brain
(Zulkifli et al., 2003). Feed-restricted chickens also had
smaller increases in heterophil/lymphocyte (H/L) ratios (an
indicator of perceived stress in birds; Gross and Siegel, 1983),
were more resistant to infection (marble spleen disease), and
grew better than counterparts fed ad libitum under heat stress
(7 days at 35°C; Zulkifli et al., 1994).

Starvation may also be a protective strategy to survive
under cold stress. Ectothermic animals can succumb to cold
temperatures due to depressive effects on enzyme activity
levels, reduced fluidity of membranes, reduced neuromuscular
function and an overall energy supply shortage causing cell
damage (Andersen et al., 2013, Lu et al., 2019). Yet, when
starved, several incidences of cross-protection to acute cold
temperatures have been documented in the literature. For
example, following 4 days of starvation, cold tolerance was
increased by ~1°C in two species of moth (Busseola fusca and
Sesamia calamistis) and increased by a remarkable ~3.5°C
in the spotted stalk borer (Chilo partellus; Mutamiswa et al.,
2018). Similarly, starvation decreased the chill coma recovery
time, a measure of cold tolerance in insects, of silkworm
(Bombyx mori; Mir et al., 2018) and of migratory locust (L.
migratoria; Andersen et al., 2013). The mechanism for cross-
protection between starvation and cold temperature toler-
ance among insects is likely associated with lipid metabolism
(Sinclair et al., 2015) and a faster recovery of muscle potas-
sium concentrations, muscle water content and haemolymph
ion equilibria (Na* and KT) of fasted compared to fed animals
(Andersen et al., 2013). Cross-protection between starvation
and cold temperatures has also been detected among fishes.
Resistance to an acute cold shock, for example, was enhanced
in zebrafish (D. rerio) fasted for 3 days (Lu et al., 2019).
This increased tolerance to cold temperatures was correlated
with lipid catabolism and cell damage attenuation. Overall,
starvation often confers cross-protection to cold temperatures
in ectotherms.

Cross-protection in conservation

As stressors continue to multiply in ecosystems, it is essential
that we understand the interactions among them so that
informed conservation and management actions can be
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developed. Complete eradication of stressors is an unrealistic
goal, because it requires the removal of stressor drivers
(e.g. ceasing water extraction for agricultural purposes),
which often conflict with human demands. Conservation
funds are also limited, highlighting the importance of
directing funds towards the mitigation of stressors that
provide the greatest ecosystem benefit. The majority of
conservation plans target stressors in isolation and overlook
potential interactions, which may lead to less effective
conservation outcomes. However, many organizations are
moving towards developing multi-stressor frameworks. For
example, the Ontario Ministry of Natural Resources and
Forestry developed a framework (i.e. Driver-Pressure-State-
Impact-Response, DPSIR framework) for freshwater lakes
and rivers, which is a conceptual tool that aids in identifying
appropriate management options depending on stressor
interactions (Chu et al., 2018). The DPSIR framework is one
of the first decision-making tools to explicitly acknowledge
cross-protection interactions (termed ‘ecological surprises’
in the tool) and suggests interaction-specific management
actions. For example, where synergistic interactions (i.e. when
stressors amplify each other’s negative effects) are identified,
the DPSIR framework recommends prioritizing the dominant
(exacerbating) stressor for mitigation. In contrast, where
protective interactions are identified, the DPSIR framework
recommends monitoring the stressor effects rather than
mitigating the stressors.

Multi-stressor research is integral to the development of
decision-making tools for species conservation. However, syn-
ergisms have been overrepresented in ecological and con-
servation literature, despite other interaction types (antago-
nisms, additive) being just as common (Co6té et al., 2016).
Due to their nature, synergistic interactions are particularly
threatening to species persistence, but focusing exclusively
on these interactions may discourage policymakers from tak-
ing action and overlook opportunities inherent to cross-
protection interactions. Identifying and understanding cross-
protection interactions allows managers to avoid costly and
unrealistic ‘blanket plans’ that aim to eliminate all forms of
stress. Instead, management plans could aim to conserve the
synchronicity of natural stress cycles (e.g. heat and desicca-
tion coupling), where cross-protection has evolved naturally.
Cases of natural cross-protection may be disrupted by climate
change processes, particularly if co-occurring stressors are
decoupled. Phenological shifts may disrupt the temporal cou-
pling of stressors, potentially leaving species less prepared for
subsequent stress. Climate change may also alter the intensity
of stressors, by for example, extending dry seasons or increas-
ing the severity of droughts. A change in stressor severity is
likely to alter the nature of stressor interactions, where mild
stress is generally conducive to the development of cross-
protection, but severe stress is not (e.g. Gantz and Lee 2013,
Smallbone et al., 2016, Todgham et al., 2005). For example,
a +12°C HS proved beneficial in ameliorating the effects
(survival) of salinity stress (90 ppt) in tidepool sculpins, but a
+15°C HS was too strong and increased mortality (Todgham
et al., 2005). Similarly, short-term desiccation stress (24 h
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at 0% relative humidity) improved the survival of Golden-
rod gall fly (E. solidaginis) when exposed to a subsequent
cold shock (—18°C for 24 h), but 12 h of desiccation (0%
relative humidity) did not provide cross-protection benefits
(Gantz and Lee, 2015). Therefore, conserving natural cross-
protection interactions may prevent stress-driven episodes of
selection, and the attrition of genetic variation in vulnerable
populations (Brévault ez al., 2011, Coors et al., 2009).

Cross-protection interactions may also be taken advantage
of more directly. For example, where the use of insecticides
is necessary to meet food production demands, non-target
species may be preconditioned with mild stress so they are
more resilient (e.g. Box 2). Similarly, mass mortalities of
aquaculture species are increasing due to heatwaves becom-
ing more intense and frequent. But, cross-protection stud-
ies suggest there is potential to prime some species with
a mild stressor so they are better prepared for heat stress
(Table 1). Aquaculture practices could also be refined to ben-
efit from cross-protection interactions. Aquaculture is set to
play a pivotal role in species’ conservation (e.g. by enhancing
wild fisheries, restoring endangered populations and replac-
ing wild species on the food market; Diana, 2009, Froehlich
et al., 2017), with the term ‘conservation aquaculture’ being
coined in recent decades (Anders, 1998). Yet, aquaculture
species face an unprecedented number of stressors due to the
intensification of operations and the challenges arising from
climate change (Froehlich et al., 2018, Stewart-Sinclair et al.,
2020). Refining aquaculture practices so that cross-protection
interactions are taken advantage of is a promising strategy.
For example, stress-priming salmon in freshwater facilities
before they are transported to seawater pens can increase
survival rates during this osmotic challenge (Box 1; Dubeau
et al., 1998).

Cross-protection interactions may also be pivotal when
considering stress mitigation at both local and global scales.
Global stressors, like climate warming and ocean acidifica-
tion, require the cooperation of several countries for effec-
tive mitigation. Contrarily, local stressors, like heavy metal
contamination in a lake, are easier to ameliorate by on-
the-ground actions. For this reason, local stressors should
be managed in a way that increases species resilience to
global stressors. For example, a myriad of mild stressors can
provide heightened heat tolerance in ectotherms (Tables 1-3),
and allowing these stressors to persist in habitats may protect
species from episodic heatwaves. However, key to the suc-
cessful implementation of such a strategy is the inclusion of
stressor intensity thresholds into management plans. Cross-
protection interactions are highly sensitive to the intensity
of the priming stressor; above a critical threshold, stress
exposure is detrimental, but below the critical threshold cross-
protection develops (e.g. Todgham ez al., 2005). It might be
difficult for management action plans to dial in on exact levels
of exposure to a priming stressor to promote cross-protection
to secondary stressors. However, as we gain increasing con-
trol over the environment (physical control, e.g. water mix-
ing, artificial aeration, water removal, vegetation control;
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Box 2. Cross-protection to pesticides in the wood frog (Lithobates sylvaticus)

Pesticide use is integral to many agricultural operations. However, pesticides not only impact pest species but also impact non-target species.
Ampbhibian populations are particularly sensitive to pesticide use and global declines in amphibian numbers have been linked to pesticide exposure
(Wake, 2012). In an effort to find a solution to this conservation problem, Hua et al. (2014) investigated whether cross-protection to pesticides
could be induced in wood frogs (L. sylvaticus). As embryos, wood frogs were exposed to a sub-lethal dose of an insecticide (carbaryl) as a
priming stressor and the control group was not exposed to insecticides. Tolerance to other insecticides (chlorpyrifos, malathion, permethrin,
cypermethrin) was subsequently measured in both treatment groups as tadpoles. Carbaryl priming induced cross-protection in the tadpoles,
where their tolerance to two of the four insecticides (malathion and cypermethrin) was heightened. Pesticide use is projected to increase in the
future, to meet the demands of a continually growing human population. Thus, using cross-protection interactions to heighten the resilience of
nontarget species to pesticides is a promising conservation action. Images by Jessica Hua (left) and Christopher E. Smith (right).

chemical control, e.g. nutrient precipitation, sediment dredg-
ing; biological control, e.g. re/introduction of species, removal
of species, pesticides/herbicides), controlling stressor intensity
and duration may become more feasible. Adding further com-
plexity is the importance of the RP between the priming stres-
sor and secondary stressor that is sometimes required before
cross-protection develops. Cases where cross-protection is
instantaneous may therefore be better suited to conservation
actions. The longevity of cross-protection benefits have not
been characterized for most stressor combinations, reflect-
ing a pressing knowledge gap. Protective benefits may be
brief (hours), last throughout a lifetime (Le Bourg, 2016),
or even persist between generations (Plautz et al., 2013). For
example, freshwater snails (B. glabrata) raised in the presence
of predators produced offspring that were more tolerant
of cadmium contamination (Plautz et al., 2013). Cases of
transgenerational cross-protection are particularly promising
for conservation actions because they represent an avenue
for rapid, non-genetic compensation to changing conditions.
However, very little is known about cross-tolerance within a
trans- and multi-generational context.

Although cross-protection interactions provide obvious
benefits, the potential costs associated with these interac-
tions must be considered. Most studies have overlooked
the costs that cross-protection may incur, but some studies
have observed fitness trade-offs. For example, harsh cold
stress in the red flour beetle (T. castaneum) led to improved
starvation tolerance, but these beetles were also less active
and suffered from a reduced probability of mating (Scharf

etal.,2019). Similarly, although freshwater snails (B. glabrata)
exposed to predation stress produced offspring with higher
contamination tolerance, this came at the cost of produc-
ing fewer offspring compared to non-stressed snails (Plautz
et al., 2013). Understanding the costs associated with cross-
protection interactions is a large research gap, and further
work is required so that cost-benefit analyses can be per-
formed before the integration into management plans.

Conclusion and research gaps

Cross-protection may act as a pre-adaptation to a changing
world (Sinclair et al., 2013), and here we have highlighted
many cases of cross-protection among novel/human-driven
stressors. These protective interactions occur across a diverse
range of taxonomic groups, and among both abiotic and
biotic stressors. However, research efforts have been biased
towards assessing the effects of abiotic stressors in insects and
fishes, and increasing our understanding of cross-protection
interactions in other taxa (e.g. mammals, birds, amphibians,
reptiles, arthropods) and among biotic stressors is a priority.
While the recent increase in studying cross-protection within
a global change context is encouraging, many interactions
among emerging or recently recognized stressors (e.g. noise
pollution, microplastic pollution and the spread of invasive
species) are yet to be characterized. Efforts should focus on
understanding if stressors currently present in habitats can
provide cross-protection to novel threats predicted to emerge
with climate change. Moreover, evidence for cross-protection
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has arisen primarily from laboratory-based studies that often
use extreme or unrealistic stressor treatments. Field valida-
tion studies are therefore necessary to determine if cross-
protection interactions can be observed among free-ranging
animals exposed to realistic stressor treatments. Moving for-
ward, we also require a greater understanding of how long
cross-protection lasts for, and if there are any costs associated
with the expression of cross-tolerant phenotypes. Elucidating
the costs associated with cross-protection will allow for a
greater understanding of the selection pressures potentially
driving protective interactions, and how these interactions
may play out between generations. Understanding the costs
of cross-protection will also allow managers to weigh up
protection benefits against any trade-offs. Harnessing the
power of cross-protection interactions will become increas-
ingly necessary if atmospheric carbon dioxide concentrations
exceed ‘tipping points’ (Schneider et al., 2019), and the man-
agement of local stressors is the last line of defence. The
studies outlined in this review highlight the promise of cross-
protection interactions in a changing world and reinforce
the need for additional investigation. Improving our under-
standing of cross-protection interactions and the underlying
mechanisms is key in projecting how species will cope with
a changing world and concurrently developing conservation
solutions that provide the best chance of success.

Stress/stressor: changes in an organism’s habitat that compro-
mise fitness or performance.

Cross-protection: a phenomenon where exposure to an
initial stressor elicits a beneficial response that protects the
organism from a subsequent stressor of a different nature.

Cross-tolerance: a type of cross-protection where stressors
share protective mechanisms.

Cross-talk: a type of cross-protection where stressors share
signalling/regulatory pathways that activate independent pro-
tective mechanisms.

Priming stressor: the initial, often mild, stressor organisms
experience before exposure to a subsequent stressor of a
different nature.

Secondary stressor: the second stressor an organism expe-
riences following exposure to a priming stressor.

Supplementary material is available at Conservation Physiol-
ogy online.
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